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Some Background Info Factorzatons

Vision

C. Bauckhage

» roles:
» media informatics @ B-IT/University of Bonn
» multimedia pattern recognition @ Fraunhofer IAIS
» topics:
multi-, mobile-, and social-media
image/video retrieval and analysis
communities and web intelligence
game Al and agent behavior
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Outline

Non-Negative Matrix Factorization for Activity Recognition
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Goal: Activity Recognition in Images

» joint project with Vaclav Hlavac (CTU Prague) ...
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What?
How?
Application

Multilinear
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Basic Concepts
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Matrix Factorization ontatritidend
Vision
C. Bauckhage
» given:

What?

VXN o data matrix
» factorize s.t.
V ~ WH
where

WK < basis vectors
H*" < coefficients

A

» there may be constraints on W and H

|
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Matrix Factorization; Common Constraints ke

Vision
Original C. Bauckhage
NMF
L
=ik
i .- ! - What'
= o *\_ ] How?
g VQ: _—": .'-—- i ) E i
s el
columns of H are unary -
vectors
» PCA:
columns of W are - .
orthonormal « i - : :
EEEENE a Ho
» NMF:

entries of W and H are
non-negative

Z Fraunhofer
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Non-negative Matrix Factorization

» determine W and H by minimizing least squares or
KL-divergence'?

[V—WH|? or D(V| WH)

» Update rule (shown for KL divergence):

Ht+1 - Ht Zk Wk! l//(WH)
Zm
H, /(WH)-,-
Wit Wt Z/ k,l I J,
Ik > He

'[Lee, Nature’99]
2[Lee ,NIPS’01]
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Application: Pose-based Action Recognition “ﬁiﬁiﬁj?ﬁ&ﬁ?ﬁﬁ'

C. Bauckhage

What?
How?

Application

» idea: recognize activity based on a single pose st
» applications: content based image retrieval, . ..
» problem: pose estimation and background clutter
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Application: Pose-based Action Recognition  ‘Rderzsionen

Vision

C. Bauckhage

» idea: decouple back-
and foreground using poplcaton
NMF basis
reconstruction £

» apply NMF to clean sopicaton
human poses: basis e
vectors Wpose o

> apply NMF to S * .

2. Get coefficient H = [Hy, 0. Hiyg

background images:
basis vectors Wy,
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Application: Pose-based Action Recognition “ﬁiilﬁj?ﬁ&ﬁ!ﬁﬁ'
C. Bauckhage

> estimate Wggs and W during training, where

axn __ dxkpgkxn dxm __ dxkpgkxm
Viose = WposeHpose and Vg ™ = Wiy "Hyg

where H,’;és’; can be interpreted as a pose descriptor

dxh

» For novel images V] .

, optimize for Hpoye S.1.

Hkxh
dxh _ dxkydxk pose,novel
Vo = WHnoe = (WisaW > ( )

novel pose Hkxh
bg,novel
i kxh ;
> resulting H oo 10, describes pose and separates a

foreground object from the background

» however, modeling arbitrary backgrounds is an ill
posed problem

|
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Matrix and Tensor

Application: Pose-based Action Recognition  Edrzationsin

) S

» reconstruction of poses by parts

» coefficients Hpose €ncode the appearance of a pose
(or better: a projection of V onto Wyose)

> WJss and Wi x“ enable generative detection

C. Bauckhage

Application
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Generative Model for Human Detection o

Vision

C. Bauckhage

> idea: W5t and W< generate V independently

» classify based on a likelihood ratio of independent
models [Bissacco et al.,NIPS’06]

Application

» | =V ~ WH, for combined bases W = [Wpose Wpg]

_ Plbg) 1~V Vposel/IV]
P(llpose) ~ 1~V — Vgl /N[

(1)

v

activity can be understood as a sequence of poses

express activities as distributions over a set of pose
primitives

v
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Results on Weizmann Data Set

» 10 action performed by 9 subjects

Results HOG descriptors, bi-grans Results HOG desoriptors, NHF , bi-grans

7l

[ SN

Matrix and Tensor
Factorizations in
Vision

C. Bauckhage

mﬁ,@b ’ %ii.bxﬁlﬁ%

Average precision

E—) E—
——u ——u
— ) R e
—H&— Bhattacharyya. —H— Bhattacharyya.
x? %2
; ; w ; ;
w w m w @ w0 o @ w w w w w w w w0
omber o pose oty Roborof possprotoyoes
Methods [ (%) sequences [ (%) stillimages

No background subtraction and
applicable to single frames

Thurau et al.[Dagstuhl’'09] 93 70
Niebles et al. [CVPR’07] 72.8 55.0
Weinland et al. [CVPR’08] 93.6 -
Ferrari at al. [CVPR’08] 88.0 -
Thurau et al. [CVPR’08] 94.40 70.4
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Outline

Multilinear Discriminant Analysis

=

Matrix and Tensor
Factorizations in
Vision

C. Bauckhage

Application

Multilinear
Discriminant
Analysis
Basic Concepts
What? How?

Application

What?
Why?
How?

Application
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Goal: Template Learning for Object Detection ‘coaionsn

Factorizations in
Vision

C. Bauckhage

Multilinear
Discriminant
Analysis
Basic Concepts

Fraunhofer
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Basic Concepts

Image Data in Classification

observation:

» digital intensity images < m x n arrays
» digital color images < m x n x 3 arrays

common practice:
» representation as vectors in R™ or R3™

» example
(a) x =1x]
however ...

gl B DEN DEEEN BEN e

(b) xT = [xc],where k = i-n+j

Matrix and Tensor
Factorizations in
Vision

C. Bauckhage

Basic Concepts

\

~Z Fraunhofer
I1AIS



Basic Concepts Factorzatons

Vision
3rd Order Tensors
C. Bauckhage

» color image < 3rd order tensor
A c RITH X Mo X M3
» elements Besic Gonepts

A,‘jkER

\
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: Matrix and T
Basic Concepts Facionsatiors
Ve
Some Tensor Algebra and Structures o
C. Bauckhage

» inner product

me  mp

A-B= Z Z ZAUKBUK = AjiBij

i=1 j=1 k=1

Basic Concepts

» rank-1 tensor

A=URQVeaw

Ajjk = UV

\
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Basic Concepts

Tensor Decompositions

» if there is

A*:Zur®vr®wr
r

such that

A* = argmin | A - A'||-
A/

A has a PARAFAC model

Matrix and Tensor
Factorizations in
Vision

C. Bauckhage

Basic Concepts

|
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Multilinear Filter Design Factonzationain’
Runtime e
C. Bauckhage

filtering intensity images < 2D correlation/convolution:
» no constraints
Yi=(xW)y=> XjWimjn
m,n

= O(mn) per pixel

What? How?

» PARAFAC constraints
p

Yi=(«W);=> (Ixu;) =V,

r=1

= O(p(m + n)) per pixel

|
N
|
|
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Multilinear Filter Design Fectorzstions in
Linear Discriminant Analysis e
C. Bauckhage
2 class problem:
» given: {xX,y}ici .~ what?
» find: projection w and threshold 6 S

o(x) = {wm if wix' >0

wn, otherwise

Basic Concepts
What? How?

Fisher, 1936: 2 solutions

SbW
w’S,w

w* = argmax
w

== SbW = )\SWW

w* = argmin(y — Xw) T(y — Xw)
w

\

= (X"X)"'XTy ~ Fraunhofer

IAIS



Multilinear Filter Design
Least Squares for LDA
» OLS solution
w=(X"X)"" xTy
sensitive to noise/corrupted samples
» better: RLS solution
w=(X"X+x)"" XTy
» better yet: KLS solution
w=XT(K+) "y

202

where, e.g., Kj = exp(_w>

Matrix and Tensor
Factorizations in
Vision

C. Bauckhage

What? How?
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Multilinear Filter Design Fectorzstions in
Tensor Discriminant Analysis o B:fi:age

» consider tensorial least squares problem
» i.e. minimize
2
EW) =) (w-x'-y) (5)
/ What? How?

» assume PARAFAC model for YW
» i.e. constrain W to

p
w=> uavew

r=1

|
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Multilinear Filter Design Factorzatons n
Ve
Tensor Discriminant Analysis o Balli:age

» consider tensorial least squares problem
» i.e. minimize
2
EW) =) (w-x'-y) (5)
/ What? How?

» assume PARAFAC model for YW
» i.e. constrain W to

p
w=> uavew

r=1

& this precludes closed form solution to (5)

|
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Multilinear Filter Design Factorizaions
Alternating Least Squares Algorithm Vi
C. Bauckhage

Input: a training set { X/, y’},:LH”N of tensors X/ € R™ X -+-XMn with class labels y/
Output: a rank-p approximation of an nth-order projection tensor W = uj @ u, ®@ ... @ uj,

forr=1,...,p
t=0
forj=1,...,n—1
randomly initialize uf(f)

. — What? How?
orthogonalize u]f(t) w.r.t. {uj, Lol 1}

repeat
t—t+1
forj=n,... 1

for/=1,...,N

contract x/j_ =l L@l (O () (1)

T S ul
i -l g ---in Ty

fj—1 lj+1
uj (1) = argminge || XTuf — y||%, where X = [x!, ..., xMTandy = [y", ..., yN]T
i i J
orthogonalize uf(t) w.r.t. {u} e uj("}
until |[uf(t) —uf(t —1)|| < e V t > tmax
endfor

\
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Multilinear Filter Design Factorizaions
Alternating Least Squares Algorithm Vi
C. Bauckhage

Input: a training set { X/, y’},:LH”N of tensors X/ € R™ X -+-XMn with class labels y/
Output: a rank-p approximation of an nth-order projection tensor W = uj @ u, ®@ ... @ uj,

forr=1,...,p
t=0
forj=1,...,n—1
randomly initialize uf(f)

. — What? How?
orthogonalize u;(t) wrt {ul, ... uf 1}

repeat
t—t+1
forj=n,... 1

for/=1,...,N

contract x/j_ =l Ty ool (Dl () ..Ul (1)

et iy 1t Yy n
ur(t) = argminuerXTu/f — y||2, where X = [x;l_, . ,x/{;’]T andy =[y', ..., yNIT
orthogonalize uf(t) w.r.t. {u} e u;"}
until |[uf(t) —uf(t —1)|| < e V t > tmax
endfor
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Multilinear Filter Design Factorzatons

.. . Vision
Training Time
C. Bauckhage

» rapid training

How?

u'u: my x m
VTV Mo X Mo p K XTX TMiMoMms X MyMoMms

wTw : mS X m3 Basic Concepts

What? How?

Application

» robustness against small sample sizes
» example: car detection [Bauckhage, Kaster, ICPR'06]

\
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Multilinear Filter Design

Performance

example: car detection (cntd.)

training: 35s s
test: 11s i )

o 02 04 06 08
1- precision

»W=> uov,

training: 5s e

test: 4s Y
“
0.4

o 02 04 06 08
1- precision

\

Matrix and Tensor
Factorizations in
Vision

C. Bauckhage

What?
How?

Application

Basic Concepts
What? How?
Application

What?
Why?
How?
Application
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Application

Results (Template Learning, AR Face Data)

-] e
-0 HEE

) trained with 3 samples

) trained with 6 samples

(c) trained with 3 samples ) trained with 6 samples

Matrix and Tensor
Factorizations in
Vision

C. Bauckhage

What?
How?
Application

Basic Concepts
What? How?
Application

What?
Why?
How?
Application

ZZ Fraunhofer

(e) trained with 3 samples ) trained with 6 samples

IAIS



' [ Matrix and T
Application Factonzaions In
. Vi
Results (Template Learning, Cup Data) ision
C. Bauckhage

Application
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Experiments Factorzatons i

. . . Vision
Setting (Object Detection) C. Bauskhage

» dataset: breakfast scene collection
» 22 training images
» item 66 test images
» target: green cup
» 22 unaligned patches of a cup
» up to 198 counter examples
> size: 91 x 71 x3
> p= 6
» 2 designs
1. one stage detection
2. two stage detection

Application

|
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Experiments Factorzatons

. . Visi
Results (Object Detection) - 'S“;:
. Bauckhage

» recall and precision (one stage detection)

kernel least squares kernel least squares
reg. least squares reg. least squares -
least squares - least squares - Application
1 1
T - I g
= 08 L S 08
o S —_—
2 06 2 06
w Q
0.4 0.4
0.2 0.2 fos R S— .
40 80 120 160 200 40 80 120 160 200
training images training images

|
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Experiments Fecioraaioralil

. . Visi
Results (Object Detection) - 'S'i:
. Bauckhage

» on the importance of high precision . ..

method recall precision

one stage OLS 1.00 0.20
two stage KLS  0.98 1.00

Application

Fraunhofer
I1AIS



Outline

Archetypal Analysis of Large Image Sets

\

Z

Matrix and Tensor
Factorizations in
Vision

C. Bauckhage

What?
How?

Application

Basic Concepts
What? How?

Application

Archetypal
Analysis

What?

Application
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Matrix and Tensor

Goal: Identify Structures in Image Collections Rderztonsn

Vision

C. Bauckhage

— ’ fm
- ™
’ = & Application
- | A
| % , b
LY K
*a
-
Archetypal
Analysis
ol What?
Why?
- mEE o
o [
=
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Archetypes Tho. Offcial. Gl Gomica. Qnchatype Timas Table.  {EEEEE R0

Robot Zombie AstrenadT Monster Lincoln Vampive vw.Rex Ninja  Alien Platyeus Vision

R E

TR oo C. Bauckhage

Vampire Lincoln  Mons¥er Astvonack Zomwie Robo+

Ninim o+ Rex

What?

» Plato:
ideals; pure forms
that embody fundamental
characteristics of a thing
rather than its specific 2,
peculiarities Jacob Borshard 2009

» C.G. Jung:

innate, universal forms (the hero, the great mother, the wise old man, ...) that channel
experiences and emotions, resulting in recognizable and typical behaviors with certain
probable outcomes

» A. Cutler and L. Breiman (in Technometrics 36(4), 1994):

archetypal analysis <= new way of data analysis for multivariate data % Fraun hofer
IAIS

Plasspys  Alien

\



What? .,
what is archetypal analysis? coes
R : ¢ .':-:. a0
ofe %

» AA assumes a data matrix <«

X:[X1,X2,...,Xn] € R™N

and considers a constrained optimization problem

RSS(p) = min|X - XBAH2

where

p
AR A=0,> ag=1, [=1,..

k=1

n
BeR™P, B=0,Y by=1, I=1,..

=1

P

Matrix and Tensor
Factorizations in
Vision

C. Bauckhage

What?

\
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What?

what is archetypal analysis?

» substituting Z = XB € R™*P (usually p < n) yields

n p
Zy = ijbjk and HX,’ — szak,-‘
j=1 k=1

< the archetypes z, are sparse,
convex mixtures of the data x;

< the data x; are sparse,
convex mixtures of
archetypes z

2

Matrix and Tensor
Factorizations in
Vision

C. Bauckhage

What?

\
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Matrix and Tensor
Wh at r) Factorizations in
. . Vision
what is archetypal analysis?
C. Bauckhage

» archetypes provably reside on the data convex hull

» increasing p approximates the hull

What?

convex hull

\
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Wh r) Matrix and Tensor
y . Factorizations in
P . Vision
why is it interesting?
C. Bauckhage

» recall: x; = Za; with stochastic coefficient vectors a;
= the coefficients aj; can be thought of as P(x;|zx)
= (soft)clustering, classification, ranking, ...

Why?

\\

P(x|z4) P(x|zs) P(x|ze) ~ Fraunhofer

IAIS



Matrix and Tensor
H OW? Factorizations in
- Vision
how is it computed?
C. Bauckhage

» algorithm according to Cutler and Breiman:

How?

\
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Matrix and Tensor
H OWr) Factorizations in
- Vision
how is it computed?
C. Bauckhage

» algorithm according to Cutler and Breiman:

1. determine coefficients ai; by solving n constrained
problems min || Za; — x,-H2 st.ag>0and) a6 =1

How?

\
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Matrix and Tensor
H OWr) Factorizations in
- Vision
how is it computed?
C. Bauckhage

» algorithm according to Cutler and Breiman:

1. determine coefficients ai; by solving n constrained
problems min || Za; — x,-H2 st.ag>0and) a6 =1

2. given the updated a,;, compute intermediate archetypes
Z-—xA"(AAT)"

How?

\
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Matrix and Tensor
H OWr) Factorizations in
- Vision
how is it computed?
C. Bauckhage

» algorithm according to Cutler and Breiman:
1. determine coefficients ai; by solving n constrained
problems min || Za; — x,-H2 st.ag>0and) a6 =1
2. given the updated a,;, compute intermediate archetypes
Z-—xA"(AAT)"
3. determine coefficients by by solving p constrained
problems min || Xby — ikHZ s.t. b > 0and 3, by = 1

How?

\\
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Matrix and Tensor

H OWr) Factorizations in
- Vision

how is it computed?

C. Bauckhage

» algorithm according to Cutler and Breiman:
1. determine coefficients ai; by solving n constrained
problems min || Za; — x,-H2 st.ag>0and) a6 =1
2. given the updated a,;, compute intermediate archetypes
Z-—xA"(AAT)"
3. determine coefficients by by solving p constrained
problems min || Xby — ikHZ s.t. b > 0and 3, by = 1

How?

4. update the archetypes by setting Z = XB

\\
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Matrix and Tensor
H OW r) Factorizations in

how is it computed?

Vision

C. Bauckhage

» algorithm according to Cutler and Breiman:

1.

. determine coefficients by by solving p constrained

determine coefficients ay; by solving n constrained
problems min || Za; — x,-H2 st.ag>0and) a6 =1

given the updated ay;, compute intermediate archetypes
Z-—xA"(AAT)"

How?

problems min || Xby — ikHZ s.t. b > 0and 3, by = 1

4. update the archetypes by setting Z = XB

compute the new RSS; unless it falls below a threshold or
only marginally improves the old RSS, continue at 1.

\\

Z Fraunhofer
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Matrix and Tensor
H OW? Factorizations in
- Vision
how is it computed?
C. Bauckhage

» analysis:

» instep1:i=1,...,n problems involving matrices of size p?
» instep3: k=1,...,p problems
min %b,TRbk —t’by, R=X'"XecR™, r=X%cR"
s.t. by >0
1Tbk -1 How?

» recall: p = number of archetypes: n = number of data points

\
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Matrix and Tensor
H OW? Factorizations in
- Vision
how is it computed?
C. Bauckhage

» analysis:

» instep1:i=1,...,n problems involving matrices of size p?
» instep3: k=1,...,p problems

min %b,TRbk —t'by, R=X'XeR™ r=X"3 cR"
s.t. by >0
1Tbk _ 1 How?

» recall: p = number of archetypes: n = number of data points
= step 3 involves matrices of size n? and costs dearly

\

~Z Fraunhofer
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How?

how can it be made practical?
» improvement (I): working sets

» in each iteration, consider X = Xt U X~ where

X~ = {x; € X|x; = Za;}
Xt = {x; € X|x; # Za;}

» hence X = [X X~ ] where

)= Rmxn’
X € Rmx(n—n’)

andn’ <n

Matrix and Tensor
Factorizations in
Vision

C. Bauckhage

How?

\
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How?

how can it be made practical?
» this yields:
|x- ZAH2 = | x7) -z [a" A7) H2

o gl e e |

#0 =0

and with Z = XB, where B~ = 0, it further reduces to
e I e Sl P |

e oxa]

|
Z Fraunhofer
I1AIS



How?

how can it be made practical?
» this yields:
|x- ZAH2 = | x7) -z [a" A7) H2

o gl e e |

#0 =0

and with Z = XB, where B~ = 0, it further reduces to
e I e Sl P |

e oxa]

» effort in step 3 reduces to O(n2) < O(n?)

|
Z Fraunhofer
I1AIS



How?

how can it be made practical?

» improvement (ll): sampling the convex hull

» archetypes are mixtures of points on the data convex hull

= restrict algorithm to X" C X

» in R™, convex hull computation is “expensive” (9(n(™/2)))

= consider (many) 2D projections of

the data and sample the hull

Matrix and Tensor
Factorizations in
Vision

C. Bauckhage

How?

|
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Matrix and Tensor
H OW? Factorizations in
. . Vision
how can it be made practical?
C. Bauckhage

» every image of a polytope P under an affine map
m: X — Mx+1t is a polytope

» in particular, every vertex of an affine image of P
corresponds to a vertex of P

» sampling the hull is “cheap”
» effort is then O(n'"?) < O(r?)

» n"is Q(+/log n)

How?

|
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How?

how can it be made practical?

— proposed acceleration |

— proposed acceleration Il

—— classical archetypal analysis
600

500

S
3
g

w
S

time in seconds

200

350 450 550 650 750
number of data points.

50 150 250

850

9

Input: data matrix X € R™*"
Output: matrix of archetypes Z € R™*P
and coefficient matrices A and B

preselect archetypal candidates X' H
initialize matrices Z, A, and B
compute RSS;_g
repeat
optimize A = ming || X" — ZA|?
st.ag; >0and};a; =1
determine working set X
determine matrices X, A*, and Z*
setB~ =0

optimize B* = ming | 2" — x* B+ |2

st.bj > 0and); by = 1
update the archetypes Z = X B*

until RSS; ¢ < 60 or |[RSS; 4 — RSSy| < €

\

Matrix and Tensor
Factorizations in
Vision

C. Bauckhage

How?

~Z Fraunhofer
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. . Matrix and T
Application Factorizations n
Ve
A convex hull projections of 50.000 flickr images o
C. Bauckhage

m 7

Application

|
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H H Matri d Te
Application Factorizstions I
e
The archetypes of 50.000 flickr Images o
C. Bauckhage

Application

\
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Application Factorizaions

1.600.000 tiny images provided by Torralba, Fergus and Weiss vision
C. Bauckhage

» 3072 dim. RGB color features

» 16 archetypal images

How?

Application

Application

\
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Application Factorzatons

Vision

One cannot help but notice ...

C. Bauckhage

Z Fraunhofer
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Outline

Non-Negative Matrix Factorization for Activity Recognition

What?
How?
Application

Multilinear Discriminant Analysis
Basic Concepts
What? How?
Application

Archetypal Analysis of Large Image Sets
What?
Why?
How?
Application

Conclusion

Z Fraunhofer
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H Matrix and Tensor
CO“C'USlon | Factorizations in

Vision

C. Bauckhage

v

Data representations by matrix factorization: V ~ WH

Reconstruction using independently generated basis
vectors: W4, W,

Applied for pose estimation in cluttered images

So far: sparseness in W and H for conic

combinations

Next: further constraints to W and H for efficient

pattern indeXing Conclusion

v

v

v

v

|
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H Matrix and Tensor
COﬂClUSlon | I Factorizations in
Vision

C. Bauckhage

» tensor-based approach to filter design
» incorporating the kernel-trick increases

» robustness under presence of outliers
» robustness under high degree of data variability

Conclusion
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H Matrix and Tensor
COﬂClUSlon | I | Factorizations in
Vision

C. Bauckhage

» AAis an interesting, “novel” approach to data
analysis and classification

» exploiting its geometry drastically accelerates
AA so that it becomes practical

» caveat:
» cases where m > n

Conclusion
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